Printing Vocabulary Growth Curves (zipfR)
## S3 method for class 'vgc' print(x, all=FALSE, ...) ## S3 method for class 'vgc' summary(object, ...)
x, object |
an object of class |
all |
if |
... |
other arguments passed on from generic method will be ignored |
NB: implementation details and format of the summary are subject to change in future releases
print.vgc
calls the standard print
method for
data frames internally, but reduces the data set randomly to
show at most 25 sample sizes (unless all=TRUE
).
summary.vgc
gives a concise summary of the available vocabulary
growth data in the vgc
object, including the number and range
of sample sizes, whether spectrum elements are included, and whether
variances are included.
NULL
Unlike other implementations of the summary
method,
summary.vgc
only prints a summary on screen and does not return
a special "summary" object.
See the vgc
manpage for details on vgc
objects.
## load Brown "informative" prose empirical vgc data(BrownInform.emp.vgc) ## summary, print (random subset) and print all summary(BrownInform.emp.vgc) print(BrownInform.emp.vgc) print(BrownInform.emp.vgc,all=TRUE) ## load Brown informative prose spectrum ## and get estimate a fzm model data(BrownInform.spc) fzm <- lnre("fzm",BrownInform.spc,exact=FALSE) ## obtain expected vgc up to 2M tokens ## with spectrum elements up to V_3 ## and variances fzm.vgc <- lnre.vgc(fzm,(1:100)*2e+4,m.max=3,variances=TRUE) ## summary and print summary(fzm.vgc) print(fzm.vgc) print(fzm.vgc,all=TRUE)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.