Comparison of different types of metamodels
modelComparison fits different metamodels and returns R2
and RMSE
criteria relating to each.
modelComparison(X,Y, type="all",K=10,test=NULL,...)
X |
a data.frame containing the design of experiments |
Y |
a vector containing the response variable |
type |
a vector containing the type of models to compare. The default value is |
K |
the number of folds for cross-validation (default value is set at 10) |
test |
a data.frame containing the design and the response of a test set when available, the prediction criteria will be evaluated on the test design (default corresponds to no test set) |
... |
according to the |
A list containing two fields if the argument test
equal NULL
and three fields otherwise :
Learning |
|
CV |
|
Test |
|
A graphical tool to compare the value of the criteria is proposed.
D. Dupuy
## Not run: data(dataIRSN5D) X <- dataIRSN5D[,1:5] Y <- dataIRSN5D[,6] data(testIRSN5D) library(gam) library(mda) library(polspline) crit <- modelComparison(X,Y, type="all",test=testIRSN5D) crit2 <- modelComparison(X,Y, type=rep("StepLinear",5),test=testIRSN5D, penalty=c(1,2,5,10,20),formula=Y~.^2) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.