This function combines the functionality of GraphDistatisCompromise, GraphDistatisPartial, GraphDistatisBoot, and GraphDistatisRv.
This function produces 4 plots: (1) a compromise plot, (2) a partial factor scores plot, (3) a bootstrap confidence intervals plot, and (4) a Rv map.
GraphDistatisAll(FS, PartialFS, FBoot, RvFS, axis1 = 1, axis2 = 2, constraints = NULL, item.colors = NULL, participant.colors = NULL, ZeTitleBase = NULL, nude = FALSE, Ctr = NULL, RvCtr=NULL, color.by.observations = TRUE, lines = TRUE, lwd = 3.5, ellipses = TRUE, fill = TRUE, fill.alpha = 0.27, percentage = 0.95)
FS |
The factor scores of the observations ( |
PartialFS |
The partial factor scores of the observations ( |
FBoot |
is the bootstrapped factor scores array ( |
RvFS |
The factor scores of the distance matrices ( |
axis1 |
The dimension for the horizontal axis of the plots. |
axis2 |
The dimension for the vertical axis of the plots. |
constraints |
constraints for the axes |
item.colors |
A I*1 matrix (with I = # observations)
of color names for the observations. If NULL (default), |
participant.colors |
A I*1 matrix (with I = # participants)
of color names for the observations. If NULL (default), |
ZeTitleBase |
General title for the plots. |
nude |
When |
Ctr |
Contributions of each observation. If NULL (default), these are computed from FS |
RvCtr |
Contributions of each participant. If NULL (default), these are computed from RvFS |
color.by.observations |
if |
lines |
If |
lwd |
Thickness of the line plotting the ellipse or hull. |
ellipses |
a boolean. When |
fill |
when |
fill.alpha |
transparency index when filling in the ellipses. Related to ellipses only. |
percentage |
A value to determine the percent coverage of the bootstrap partial factor scores to provide ellipse or hull confidence intervals. |
constraints |
A set of plot constraints that are returned. |
item.colors |
A set of colors for the observations are returned. |
participant.colors |
A set of colors for the participants are returned. |
Derek Beaton and Herve Abdi
# 1. Load the Sort data set from the SortingBeer example (available from the DistatisR package) data(SortingBeer) # Provide an 8 beers by 10 assessors results of a sorting task #----------------------------------------------------------------------------- # 2. Create the set of distance matrices (one distance matrix per assessor) # (ues the function DistanceFromSort) DistanceCube <- DistanceFromSort(Sort) #----------------------------------------------------------------------------- # 3. Call the DISTATIS routine with the cube of distance as parameter testDistatis <- distatis(DistanceCube) # The factor scores for the beers are in # testDistatis$res4Splus$F # the partial factor score for the beers for the assessors are in # testDistatis$res4Splus$PartialF # # 4. Get the bootstraped factor scores (with default 1000 iterations) BootF <- BootFactorScores(testDistatis$res4Splus$PartialF) #----------------------------------------------------------------------------- # 5. Create the Graphics with GraphDistatisAll # GraphDistatisAll(testDistatis$res4Splus$F,testDistatis$res4Splus$PartialF, BootF,testDistatis$res4Cmat$G)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.