Covariance Model for binary field based on a Gaussian field
RMbernoulli gives
the centered correlation function of a binary field,
obtained by thresholding a Gaussian field.
RMbernoulli(phi, threshold, correlation, centred, var, scale, Aniso, proj)
phi |
covariance function of class |
threshold |
real valued threshold, see
Default: 0. |
correlation |
logical. If Default: |
centred |
logical. If Default: |
var,scale,Aniso,proj |
optional arguments; same meaning for any
|
This model yields the covariance function of the field
that is returned by RPbernoulli.
RMbernoulli returns an object of class RMmodel.
Previous to version 3.0.33 the covariance function was returned, not the correlation function.
Martin Schlather, schlather@math.uni-mannheim.de, https://www.wim.uni-mannheim.de/schlather/
Ballani, Schlather
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set ## RFoptions(seed=NA) to make them all random again threshold <- 0 x <- seq(0, 5, 0.02) GaussModel <- RMgneiting() n <- 1000 z <- RFsimulate(RPbernoulli(GaussModel, threshold=threshold), x=x, n=n) plot(z) model <- RMbernoulli(RMgauss(), threshold=threshold, correlation=FALSE) plot(model, xlim=c(0,5)) z1 <- as.matrix(z) estim.cov <- apply(z1, 1, function(x) cov(x, z1[1,])) points(coordinates(z), estim.cov, col="red")
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.