Convert a data.frame to a data.tree structure
Convert a data.frame
to a data.tree
structure
## S3 method for class 'data.frame' as.Node( x, ..., mode = c("table", "network"), pathName = "pathString", pathDelimiter = "/", colLevels = NULL, na.rm = TRUE ) FromDataFrameTable( table, pathName = "pathString", pathDelimiter = "/", colLevels = NULL, na.rm = TRUE, check = c("check", "no-warn", "no-check") ) FromDataFrameNetwork(network, check = c("check", "no-warn", "no-check"))
x |
The data.frame in the required format. |
... |
Any other argument implementations of this might need |
mode |
Either "table" (if x is a data.frame in tree or table format) or "network" |
pathName |
The name of the column in x containing the path of the row |
pathDelimiter |
The delimiter used to separate nodes in |
colLevels |
Nested list of column names, determining on what node levels the attributes are written to. |
na.rm |
If |
table |
a |
check |
Either
|
network |
A
|
The root Node
of the data.tree
structure
Other as.Node:
as.Node.dendrogram()
,
as.Node.list()
,
as.Node.phylo()
,
as.Node.rpart()
,
as.Node()
data(acme) #Tree x <- ToDataFrameTree(acme, "pathString", "p", "cost") x xN <- as.Node(x) print(xN, "p", "cost") #Table x <- ToDataFrameTable(acme, "pathString", "p", "cost") x xN <- FromDataFrameTable(x) print(xN, "p", "cost") #More complex Table structure, using colLevels acme$Set(floor = c(1, 2, 3), filterFun = function(x) x$level == 2) x <- ToDataFrameTable(acme, "pathString", "floor", "p", "cost") x xN <- FromDataFrameTable(x, colLevels = list(NULL, "floor", c("p", "cost")), na.rm = TRUE) print(xN, "floor", "p", "cost") #Network x <- ToDataFrameNetwork(acme, "p", "cost", direction = "climb") x xN <- FromDataFrameNetwork(x) print(xN, "p", "cost")
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.