Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

WeightedDiscrete

WeightedDiscrete Distribution Class


Description

Mathematical and statistical functions for the WeightedDiscrete distribution, which is commonly used in empirical estimators such as Kaplan-Meier.

Details

The WeightedDiscrete distribution is defined by the pmf,

f(x_i) = p_i

for p_i, i = 1,…,k; ∑ p_i = 1.

Sampling from this distribution is performed with the sample function with the elements given as the x values and the pdf as the probabilities. The cdf and quantile assume that the elements are supplied in an indexed order (otherwise the results are meaningless).

The number of points in the distribution cannot be changed after construction.

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on x_1,...,x_k.

Default Parameterisation

WeightDisc(x = 1, pdf = 1)

Omitted Methods

N/A

Also known as

N/A

Super classes

Public fields

name

Full name of distribution.

short_name

Short name of distribution for printing.

description

Brief description of the distribution.

Methods

Public methods


Method new()

Creates a new instance of this R6 class.

Usage
WeightedDiscrete$new(x = NULL, pdf = NULL, cdf = NULL, decorators = NULL)
Arguments
x

numeric()
Data samples, must be ordered in ascending order.

pdf

numeric()
Probability mass function for corresponding samples, should be same length x. If cdf is not given then calculated as cumsum(pdf).

cdf

numeric()
Cumulative distribution function for corresponding samples, should be same length x. If given then pdf is ignored and calculated as difference of cdfs.

decorators

(character())
Decorators to add to the distribution during construction.


Method strprint()

Printable string representation of the Distribution. Primarily used internally.

Usage
WeightedDiscrete$strprint(n = 2)
Arguments
n

(integer(1))
Ignored.


Method mean()

The arithmetic mean of a (discrete) probability distribution X is the expectation

E_X(X) = ∑ p_X(x)*x

with an integration analogue for continuous distributions.

Usage
WeightedDiscrete$mean(...)
Arguments
...

Unused.


Method mode()

The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage
WeightedDiscrete$mode(which = "all")
Arguments
which

(character(1) | numeric(1)
Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies which mode to return.


Method variance()

The variance of a distribution is defined by the formula

var_X = E[X^2] - E[X]^2

where E_X is the expectation of distribution X. If the distribution is multivariate the covariance matrix is returned.

Usage
WeightedDiscrete$variance(...)
Arguments
...

Unused.


Method skewness()

The skewness of a distribution is defined by the third standardised moment,

sk_X = E_X[((x - μ)/σ)^3]

where E_X is the expectation of distribution X, μ is the mean of the distribution and σ is the standard deviation of the distribution.

Usage
WeightedDiscrete$skewness(...)
Arguments
...

Unused.


Method kurtosis()

The kurtosis of a distribution is defined by the fourth standardised moment,

k_X = E_X[((x - μ)/σ)^4]

where E_X is the expectation of distribution X, μ is the mean of the distribution and σ is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage
WeightedDiscrete$kurtosis(excess = TRUE, ...)
Arguments
excess

(logical(1))
If TRUE (default) excess kurtosis returned.

...

Unused.


Method entropy()

The entropy of a (discrete) distribution is defined by

- ∑ (f_X)log(f_X)

where f_X is the pdf of distribution X, with an integration analogue for continuous distributions.

Usage
WeightedDiscrete$entropy(base = 2, ...)
Arguments
base

(integer(1))
Base of the entropy logarithm, default = 2 (Shannon entropy)

...

Unused.


Method mgf()

The moment generating function is defined by

mgf_X(t) = E_X[exp(xt)]

where X is the distribution and E_X is the expectation of the distribution X.

Usage
WeightedDiscrete$mgf(t, ...)
Arguments
t

(integer(1))
t integer to evaluate function at.

...

Unused.


Method cf()

The characteristic function is defined by

cf_X(t) = E_X[exp(xti)]

where X is the distribution and E_X is the expectation of the distribution X.

Usage
WeightedDiscrete$cf(t, ...)
Arguments
t

(integer(1))
t integer to evaluate function at.

...

Unused.


Method pgf()

The probability generating function is defined by

pgf_X(z) = E_X[exp(z^x)]

where X is the distribution and E_X is the expectation of the distribution X.

Usage
WeightedDiscrete$pgf(z, ...)
Arguments
z

(integer(1))
z integer to evaluate probability generating function at.

...

Unused.


Method setParameterValue()

Sets the value(s) of the given parameter(s).

Usage
WeightedDiscrete$setParameterValue(
  ...,
  lst = NULL,
  error = "warn",
  resolveConflicts = FALSE
)
Arguments
...

ANY
Named arguments of parameters to set values for. See examples.

lst

(list(1))
Alternative argument for passing parameters. List names should be parameter names and list values are the new values to set.

error

(character(1))
If "warn" then returns a warning on error, otherwise breaks if "stop".

resolveConflicts

(logical(1))
If FALSE (default) throws error if conflicting parameterisations are provided, otherwise automatically resolves them by removing all conflicting parameters.


Method clone()

The objects of this class are cloneable with this method.

Usage
WeightedDiscrete$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01). Michael P. McLaughlin.

See Also

Examples

x <- WeightedDiscrete$new(x = 1:3, pdf = c(1 / 5, 3 / 5, 1 / 5))
WeightedDiscrete$new(x = 1:3, cdf = c(1 / 5, 4 / 5, 1)) # equivalently

# d/p/q/r
x$pdf(1:5)
x$cdf(1:5) # Assumes ordered in construction
x$quantile(0.42) # Assumes ordered in construction
x$rand(10)

# Statistics
x$mean()
x$variance()

summary(x)

distr6

The Complete R6 Probability Distributions Interface

v1.5.2
MIT + file LICENSE
Authors
Raphael Sonabend [aut, cre] (<https://orcid.org/0000-0001-9225-4654>), Franz Kiraly [aut], Peter Ruckdeschel [ctb] (Author of distr), Matthias Kohl [ctb] (Author of distr), Nurul Ain Toha [ctb], Shen Chen [ctb], Jordan Deenichin [ctb], Chengyang Gao [ctb], Chloe Zhaoyuan Gu [ctb], Yunjie He [ctb], Xiaowen Huang [ctb], Shuhan Liu [ctb], Runlong Yu [ctb], Chijing Zeng [ctb], Qian Zhou [ctb]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.