Generic function for the computation of the Hellinger distance of two distributions
Generic function for the computation of the Hellinger distance d_h of two distributions P and Q which may be defined for an arbitrary sample space (Omega, A). The Hellinger distance is defined as
0.5 \int |√{dP}-√{dQ}|^2
where √{dP}, respectively √{dQ} denotes the square root of the densities.
HellingerDist(e1, e2, ...) ## S4 method for signature 'AbscontDistribution,AbscontDistribution' HellingerDist(e1,e2, rel.tol=.Machine$double.eps^0.3, TruncQuantile = getdistrOption("TruncQuantile"), IQR.fac = 15, ..., diagnostic = FALSE) ## S4 method for signature 'AbscontDistribution,DiscreteDistribution' HellingerDist(e1,e2, ...) ## S4 method for signature 'DiscreteDistribution,AbscontDistribution' HellingerDist(e1,e2, ...) ## S4 method for signature 'DiscreteDistribution,DiscreteDistribution' HellingerDist(e1,e2, ...) ## S4 method for signature 'numeric,DiscreteDistribution' HellingerDist(e1, e2, ...) ## S4 method for signature 'DiscreteDistribution,numeric' HellingerDist(e1, e2, ...) ## S4 method for signature 'numeric,AbscontDistribution' HellingerDist(e1, e2, asis.smooth.discretize = "discretize", n.discr = getdistrExOption("nDiscretize"), low.discr = getLow(e2), up.discr = getUp(e2), h.smooth = getdistrExOption("hSmooth"), rel.tol=.Machine$double.eps^0.3, TruncQuantile = getdistrOption("TruncQuantile"), IQR.fac = 15, ..., diagnostic = FALSE) ## S4 method for signature 'AbscontDistribution,numeric' HellingerDist(e1, e2, asis.smooth.discretize = "discretize", n.discr = getdistrExOption("nDiscretize"), low.discr = getLow(e1), up.discr = getUp(e1), h.smooth = getdistrExOption("hSmooth"), rel.tol=.Machine$double.eps^0.3, TruncQuantile = getdistrOption("TruncQuantile"), IQR.fac = 15, ..., diagnostic = FALSE) ## S4 method for signature 'AcDcLcDistribution,AcDcLcDistribution' HellingerDist(e1,e2, rel.tol=.Machine$double.eps^0.3, TruncQuantile = getdistrOption("TruncQuantile"), IQR.fac = 15, ..., diagnostic = FALSE)
e1 |
object of class |
e2 |
object of class |
asis.smooth.discretize |
possible methods are |
n.discr |
if |
low.discr |
if |
up.discr |
if |
h.smooth |
if |
rel.tol |
relative accuracy requested in integration |
TruncQuantile |
Quantile the quantile based integration bounds (see details) |
IQR.fac |
Factor for the scale based integration bounds (see details) |
... |
further arguments to be used in particular methods – (in package distrEx: just
used for distributions with a.c. parts, where it is used to pass on arguments
to |
diagnostic |
logical; if |
For distances between absolutely continuous distributions, we use numerical
integration; to determine sensible bounds we proceed as follows:
by means of min(getLow(e1,eps=TruncQuantile),getLow(e2,eps=TruncQuantile))
,
max(getUp(e1,eps=TruncQuantile),getUp(e2,eps=TruncQuantile))
we determine
quantile based bounds c(low.0,up.0)
, and by means of
s1 <- max(IQR(e1),IQR(e2));
m1<- median(e1);
m2 <- median(e2)
and low.1 <- min(m1,m2)-s1*IQR.fac
, up.1 <- max(m1,m2)+s1*IQR.fac
we determine scale based bounds; these are combined by
low <- max(low.0,low.1)
, up <- max(up.0,up1)
.
In case we want to compute the Hellinger distance between (empirical) data
and an abs. cont. distribution, we can specify the parameter asis.smooth.discretize
to avoid trivial distances (distance = 1).
Using asis.smooth.discretize = "discretize"
, which is the default,
leads to a discretization of the provided abs. cont. distribution and
the distance is computed between the provided data and the discretized
distribution.
Using asis.smooth.discretize = "smooth"
causes smoothing of the
empirical distribution of the provided data. This is, the empirical
data is convoluted with the normal distribution Norm(mean = 0, sd = h.smooth)
which leads to an abs. cont. distribution. Afterwards the distance
between the smoothed empirical distribution and the provided abs. cont.
distribution is computed.
Diagnostics on the involved integrations are available if argument
diagnostic
is TRUE
. Then there is attribute diagnostic
attached to the return value, which may be inspected
and accessed through showDiagnostic
and
getDiagnostic
.
Hellinger distance of e1
and e2
Hellinger distance of two absolutely continuous
univariate distributions which is computed using distrExintegrate
.
Hellinger distance of absolutely continuous and discrete
univariate distributions (are mutually singular; i.e.,
have distance =1
).
Hellinger distance of two discrete univariate distributions
which is computed using support
and sum
.
Hellinger distance of discrete and absolutely continuous
univariate distributions (are mutually singular; i.e.,
have distance =1
).
Hellinger distance between (empirical) data and a discrete distribution.
Hellinger distance between (empirical) data and a discrete distribution.
Hellinger distance between (empirical) data and an abs. cont. distribution.
Hellinger distance between (empirical) data and an abs. cont. distribution.
Hellinger distance of mixed discrete and absolutely continuous univariate distributions.
Matthias Kohl Matthias.Kohl@stamats.de,
Peter Ruckdeschel peter.ruckdeschel@uni-oldenburg.de
Huber, P.J. (1981) Robust Statistics. New York: Wiley.
Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.
HellingerDist(Norm(), UnivarMixingDistribution(Norm(1,2),Norm(0.5,3), mixCoeff=c(0.2,0.8))) HellingerDist(Norm(), Td(10)) HellingerDist(Norm(mean = 50, sd = sqrt(25)), Binom(size = 100)) # mutually singular HellingerDist(Pois(10), Binom(size = 20)) x <- rnorm(100) HellingerDist(Norm(), x) HellingerDist(x, Norm(), asis.smooth.discretize = "smooth") y <- (rbinom(50, size = 20, prob = 0.5)-10)/sqrt(5) HellingerDist(y, Norm()) HellingerDist(y, Norm(), asis.smooth.discretize = "smooth") HellingerDist(rbinom(50, size = 20, prob = 0.5), Binom(size = 20, prob = 0.5))
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.