Generic function for the computation of the Kolmogorov distance of two distributions
Generic function for the computation of the Kolmogorov distance d_k of two distributions P and Q where the distributions are defined on a finite-dimensional Euclidean space (R^m, B^m) with B^m the Borel-sigma-algebra on R^m. The Kolmogorov distance is defined as
d_k(P,Q)=\sup{|P({y in R^m | y <= x})-Q({y in R^m | y <= x})| | x in R^m}
where ≤ is coordinatewise on R^m.
KolmogorovDist(e1, e2, ...) ## S4 method for signature 'AbscontDistribution,AbscontDistribution' KolmogorovDist(e1,e2) ## S4 method for signature 'AbscontDistribution,DiscreteDistribution' KolmogorovDist(e1,e2) ## S4 method for signature 'DiscreteDistribution,AbscontDistribution' KolmogorovDist(e1,e2) ## S4 method for signature 'DiscreteDistribution,DiscreteDistribution' KolmogorovDist(e1,e2) ## S4 method for signature 'numeric,UnivariateDistribution' KolmogorovDist(e1, e2) ## S4 method for signature 'UnivariateDistribution,numeric' KolmogorovDist(e1, e2) ## S4 method for signature 'AcDcLcDistribution,AcDcLcDistribution' KolmogorovDist(e1, e2)
e1 |
object of class |
e2 |
object of class |
... |
further arguments to be used in particular methods (not in package distrEx) |
Kolmogorov distance of e1
and e2
Kolmogorov distance of two absolutely continuous univariate distributions which is computed using a union of a (pseudo-)random and a deterministic grid.
Kolmogorov distance of two discrete univariate distributions.
The distance is attained at some point of the union of the supports
of e1
and e2
.
Kolmogorov distance of absolutely continuous and discrete
univariate distributions. It is computed using a union of
a (pseudo-)random and a deterministic grid in combination
with the support of e2
.
Kolmogorov distance of discrete and absolutely continuous
univariate distributions. It is computed using a union of
a (pseudo-)random and a deterministic grid in combination
with the support of e1
.
Kolmogorov distance between (empirical) data and a univariate
distribution. The computation is based on ks.test
.
Kolmogorov distance between (empirical) data and a univariate
distribution. The computation is based on ks.test
.
Kolmogorov distance of mixed discrete and absolutely continuous
univariate distributions. It is computed using a union of
the discrete part, a (pseudo-)random and
a deterministic grid in combination
with the support of e1
.
Matthias Kohl Matthias.Kohl@stamats.de,
Peter Ruckdeschel peter.ruckdeschel@uni-oldenburg.de
Huber, P.J. (1981) Robust Statistics. New York: Wiley.
Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.
KolmogorovDist(Norm(), UnivarMixingDistribution(Norm(1,2),Norm(0.5,3), mixCoeff=c(0.2,0.8))) KolmogorovDist(Norm(), Td(10)) KolmogorovDist(Norm(mean = 50, sd = sqrt(25)), Binom(size = 100)) KolmogorovDist(Pois(10), Binom(size = 20)) KolmogorovDist(Norm(), rnorm(100)) KolmogorovDist((rbinom(50, size = 20, prob = 0.5)-10)/sqrt(5), Norm()) KolmogorovDist(rbinom(50, size = 20, prob = 0.5), Binom(size = 20, prob = 0.5))
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.