Functional Penalized PLS regression with scalar response
Computes functional linear regression between functional explanatory variable X(t) and scalar response Y using penalized Partial Least Squares (PLS)
Y=<\tilde{X},β>+ε
 where <.,.> denotes the inner product on
L_2 and ε are random errors with mean zero , finite variance σ^2 and E[X(t)ε]=0.
ν_1,...,ν_∞ orthonormal basis of PLS to represent the functional data as X(t)=∑_(k=1:∞)
γ_k ν_k.
fregre.pls(fdataobj, y = NULL, l = NULL, lambda = 0, P = c(0, 0, 1), ...)
fdataobj | 
 
  | 
y | 
 Scalar response with length   | 
l | 
 Index of components to include in the model.  | 
lambda | 
 Amount of penalization. Default value is 0, i.e. no penalization is used.  | 
P | 
 If   | 
... | 
 Further arguments passed to or from other methods.  | 
Functional (FPLS) algorithm maximizes the covariance between X(t) and the scalar response Y via the partial least squares (PLS) components.
The functional penalized PLS are calculated in fdata2pls by alternative formulation of the NIPALS algorithm proposed by Kraemer and
Sugiyama (2011).
 
Let {ν_k}_k=1:∞ the functional PLS components and X_i(t)=∑{k=1:∞}
γ_{ik} ν_k and β(t)=∑{k=1:∞}
β_k ν_k. The functional linear model is estimated by: 
y.est=< X,β.est > \approx ∑{k=1:k_n} γ_k β_k
 
The response can be fitted by: 
λ=0, no penalization,
y.est= ν'(ν'ν)^{-1}ν'y
 Penalized regression, λ>0 and P!=0. For example, P=c(0,0,1) penalizes the
second derivative (curvature) by P=P.penalty(fdataobj["argvals"],P),
y.est=ν'(ν'ν+λ v'Pv)^{-1}ν'y
Return:
call The matched call of fregre.pls function. 
beta.est Beta coefficient estimated of class fdata. 
coefficients A named vector of coefficients.
fitted.values Estimated scalar response. 
residualsy-fitted values. 
H Hat matrix. 
df The residual degrees of freedom. 
r2 Coefficient of determination.
GCV GCV criterion. 
sr2 Residual variance. 
l Index of components to include in the model. 
lambda Amount of shrinkage.
fdata.comp Fitted object in fdata2pls function.
lm Fitted object in lm function 
fdataobj Functional explanatory data. 
y Scalar response.
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@usc.es
Preda C. and Saporta G. PLS regression on a stochastic process. Comput. Statist. Data Anal. 48 (2005): 149-158.
N. Kraemer, A.-L. Boulsteix, and G. Tutz (2008). Penalized Partial Least Squares with Applications to B-Spline Transformations and Functional Data. Chemometrics and Intelligent Laboratory Systems, 94, 60 - 69. http://dx.doi.org/10.1016/j.chemolab.2008.06.009
Martens, H., Naes, T. (1989) Multivariate calibration. Chichester: Wiley.
Kraemer, N., Sugiyama M. (2011). The Degrees of Freedom of Partial Least Squares Regression. Journal of the American Statistical Association. Volume 106, 697-705.
Febrero-Bande, M., Oviedo de la Fuente, M. (2012). Statistical Computing in Functional Data Analysis: The R Package fda.usc. Journal of Statistical Software, 51(4), 1-28. http://www.jstatsoft.org/v51/i04/
See Also as: P.penalty and
fregre.pls.cv.
 Alternative method: fregre.pc.
## Not run: data(tecator) x<-tecator$absorp.fdata y<-tecator$y$Fat res=fregre.pls(x,y,c(1:8),lambda=10) summary(res) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.