GAM negative binomial families
Two approaches to estimating theta are available (with gam only):
With negbin then if ‘performance iteration’ is used for smoothing parameter estimation
(see gam), then smoothing parameters are chosen by GCV and
theta is chosen in order to ensure that the Pearson estimate of the scale
parameter is as close as possible to 1, the value that the scale parameter should have.
If ‘outer iteration’ is used for smoothing parameter selection with the nb family then
theta is estimated alongside the smoothing parameters by ML or REML.
To use the first option, set the optimizer argument of gam to "perf" (it can sometimes fail to converge).
negbin(theta = stop("'theta' must be specified"), link = "log")
nb(theta = NULL, link = "log")theta |
Either i) a single value known value of theta or ii) two values of theta specifying the
endpoints of an interval over which to search for theta (this is an option only for |
link |
The link function: one of |
For negbin, if a single value of theta is supplied then it is always taken as the known fixed value and this is useable with bam and gamm. If theta is two
numbers (theta[2]>theta[1]) then they are taken as specifying the range of values over which to search for
the optimal theta. This option is deprecated and should only be used with performance iteration estimation (see gam argument optimizer), in which case the method
of estimation is to choose theta so that the GCV (Pearson) estimate
of the scale parameter is one (since the scale parameter
is one for the negative binomial). In this case theta estimation is nested within the IRLS loop
used for GAM fitting. After each call to fit an iteratively weighted additive model to the IRLS pseudodata,
the theta estimate is updated. This is done by conditioning on all components of the current GCV/Pearson
estimator of the scale parameter except theta and then searching for the
theta which equates this conditional estimator to one. The search is
a simple bisection search after an initial crude line search to bracket one. The search will
terminate at the upper boundary of the search region is a Poisson fit would have yielded an estimated
scale parameter <1.
For negbin an object inheriting from class family, with additional elements
dvar |
the function giving the first derivative of the variance function w.r.t. |
d2var |
the function giving the second derivative of the variance function w.r.t. |
getTheta |
A function for retrieving the value(s) of theta. This also useful for retriving the
estimate of |
For nb an object inheriting from class extended.family.
gamm does not support theta estimation
The negative binomial functions from the MASS library are no longer supported.
Simon N. Wood simon.wood@r-project.org
modified from Venables and Ripley's negative.binomial family.
Venables, B. and B.R. Ripley (2002) Modern Applied Statistics in S, Springer.
Wood, S.N., N. Pya and B. Saefken (2016), Smoothing parameter and model selection for general smooth models. Journal of the American Statistical Association 111, 1548-1575 doi: 10.1080/01621459.2016.1180986
library(mgcv)
set.seed(3)
n<-400
dat <- gamSim(1,n=n)
g <- exp(dat$f/5)
## negative binomial data...
dat$y <- rnbinom(g,size=3,mu=g)
## known theta fit ...
b0 <- gam(y~s(x0)+s(x1)+s(x2)+s(x3),family=negbin(3),data=dat)
plot(b0,pages=1)
print(b0)
## same with theta estimation...
b <- gam(y~s(x0)+s(x1)+s(x2)+s(x3),family=nb(),data=dat)
plot(b,pages=1)
print(b)
b$family$getTheta(TRUE) ## extract final theta estimate
## another example...
set.seed(1)
f <- dat$f
f <- f - min(f)+5;g <- f^2/10
dat$y <- rnbinom(g,size=3,mu=g)
b2 <- gam(y~s(x0)+s(x1)+s(x2)+s(x3),family=nb(link="sqrt"),
data=dat,method="REML")
plot(b2,pages=1)
print(b2)
rm(dat)Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.