Graphical investigation for the number of generated datasets
The plot
method for a mira
object plots the confidence interval length against the number of multiply imputed datasets from 2 to m
. This is a graphical tool to check if the variability due to the simulation of the multiple imputation process can be substantially reduced by increasing the number of generated datasets m
.
## S3 method for class 'mira' plot(x, ...)
x |
An object of class |
... |
Extra arguments for |
Vincent Audigier vincent.audigier@cnam.fr
Schafer, J. L. (1997). Analysis of Incomplete Multivariate Data. Chapman & Hall/CRC, London
require(nlme) data(CHEM97Na) ind.clust<-1#index for the cluster variable #initialisation of the argument predictorMatrix predictor.matrix<-mice(CHEM97Na,m=1,maxit=0)$pred predictor.matrix[ind.clust,ind.clust]<-0 predictor.matrix[-ind.clust,ind.clust]<- -2 predictor.matrix[predictor.matrix==1]<-2 #initialisation of the argument method method<-c("", "2l.2stage.bin", "2l.2stage.pois", "2l.2stage.norm", "") #quickest methods #multiple imputation by chained equations (parallel calculation) #res.mice<-mice.par(CHEM97Na,m=15,predictorMatrix = predictor.matrix,method=method) #analysis (apply a linear mixed effects model to each imputed dataset) #ana<-with(res.mice,expr=lme(fixed=formula(Score~Sex+GSCE+Age), # random=formula(~1|School),method="REML", # control=list(maxIter=100,msMaxIter=100,niterEM=25))) #graphical investigation for the number of generated datasets m #plot(ana)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.