Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

calculateROCMeasures

Calculate receiver operator measures.


Description

Calculate the absolute number of correct/incorrect classifications and the following evaluation measures:

  • tpr True positive rate (Sensitivity, Recall)

  • fpr False positive rate (Fall-out)

  • fnr False negative rate (Miss rate)

  • tnr True negative rate (Specificity)

  • ppv Positive predictive value (Precision)

  • for False omission rate

  • lrp Positive likelihood ratio (LR+)

  • fdr False discovery rate

  • npv Negative predictive value

  • acc Accuracy

  • lrm Negative likelihood ratio (LR-)

  • dor Diagnostic odds ratio

For details on the used measures see measures and also https://en.wikipedia.org/wiki/Receiver_operating_characteristic.

The element for the false omission rate in the resulting object is not called for but fomr since for should never be used as a variable name in an object.

Usage

calculateROCMeasures(pred)

## S3 method for class 'ROCMeasures'
print(x, abbreviations = TRUE, digits = 2, ...)

Arguments

pred

(Prediction)
Prediction object.

x

(ROCMeasures)
Created by calculateROCMeasures.

abbreviations

(logical(1))
If TRUE a short paragraph with explanations of the used measures is printed additionally.

digits

(integer(1))
Number of digits the measures are rounded to.

...

(any)
Currently not used.

Value

(ROCMeasures). A list containing two elements confusion.matrix which is the 2 times 2 confusion matrix of absolute frequencies and measures, a list of the above mentioned measures.

Methods (by generic)

  • print:

See Also

Other roc: asROCRPrediction()

Examples

lrn = makeLearner("classif.rpart", predict.type = "prob")
fit = train(lrn, sonar.task)
pred = predict(fit, task = sonar.task)
calculateROCMeasures(pred)

mlr

Machine Learning in R

v2.19.0
BSD_2_clause + file LICENSE
Authors
Bernd Bischl [aut] (<https://orcid.org/0000-0001-6002-6980>), Michel Lang [aut] (<https://orcid.org/0000-0001-9754-0393>), Lars Kotthoff [aut], Patrick Schratz [aut, cre] (<https://orcid.org/0000-0003-0748-6624>), Julia Schiffner [aut], Jakob Richter [aut], Zachary Jones [aut], Giuseppe Casalicchio [aut] (<https://orcid.org/0000-0001-5324-5966>), Mason Gallo [aut], Jakob Bossek [ctb] (<https://orcid.org/0000-0002-4121-4668>), Erich Studerus [ctb] (<https://orcid.org/0000-0003-4233-0182>), Leonard Judt [ctb], Tobias Kuehn [ctb], Pascal Kerschke [ctb] (<https://orcid.org/0000-0003-2862-1418>), Florian Fendt [ctb], Philipp Probst [ctb] (<https://orcid.org/0000-0001-8402-6790>), Xudong Sun [ctb] (<https://orcid.org/0000-0003-3269-2307>), Janek Thomas [ctb] (<https://orcid.org/0000-0003-4511-6245>), Bruno Vieira [ctb], Laura Beggel [ctb] (<https://orcid.org/0000-0002-8872-8535>), Quay Au [ctb] (<https://orcid.org/0000-0002-5252-8902>), Martin Binder [ctb], Florian Pfisterer [ctb], Stefan Coors [ctb], Steve Bronder [ctb], Alexander Engelhardt [ctb], Christoph Molnar [ctb], Annette Spooner [ctb]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.