Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

makeTuneWrapper

Fuse learner with tuning.


Description

Fuses a base learner with a search strategy to select its hyperparameters. Creates a learner object, which can be used like any other learner object, but which internally uses tuneParams. If the train function is called on it, the search strategy and resampling are invoked to select an optimal set of hyperparameter values. Finally, a model is fitted on the complete training data with these optimal hyperparameters and returned. See tuneParams for more details.

After training, the optimal hyperparameters (and other related information) can be retrieved with getTuneResult.

Usage

makeTuneWrapper(
  learner,
  resampling,
  measures,
  par.set,
  control,
  show.info = getMlrOption("show.info")
)

Arguments

learner

(Learner | character(1))
The learner. If you pass a string the learner will be created via makeLearner.

resampling

(ResampleInstance | ResampleDesc)
Resampling strategy to evaluate points in hyperparameter space. If you pass a description, it is instantiated once at the beginning by default, so all points are evaluated on the same training/test sets. If you want to change that behavior, look at TuneControl.

measures

(list of Measure | Measure)
Performance measures to evaluate. The first measure, aggregated by the first aggregation function is optimized, others are simply evaluated. Default is the default measure for the task, see here getDefaultMeasure.

par.set

(ParamHelpers::ParamSet)
Collection of parameters and their constraints for optimization. Dependent parameters with a requires field must use quote and not expression to define it.

control

(TuneControl)
Control object for search method. Also selects the optimization algorithm for tuning.

show.info

(logical(1))
Print verbose output on console? Default is set via configureMlr.

Value

See Also

Examples

task = makeClassifTask(data = iris, target = "Species")
lrn = makeLearner("classif.rpart")
# stupid mini grid
ps = makeParamSet(
  makeDiscreteParam("cp", values = c(0.05, 0.1)),
  makeDiscreteParam("minsplit", values = c(10, 20))
)
ctrl = makeTuneControlGrid()
inner = makeResampleDesc("Holdout")
outer = makeResampleDesc("CV", iters = 2)
lrn = makeTuneWrapper(lrn, resampling = inner, par.set = ps, control = ctrl)
mod = train(lrn, task)
print(getTuneResult(mod))
# nested resampling for evaluation
# we also extract tuned hyper pars in each iteration
r = resample(lrn, task, outer, extract = getTuneResult)
print(r$extract)
getNestedTuneResultsOptPathDf(r)
getNestedTuneResultsX(r)

mlr

Machine Learning in R

v2.19.0
BSD_2_clause + file LICENSE
Authors
Bernd Bischl [aut] (<https://orcid.org/0000-0001-6002-6980>), Michel Lang [aut] (<https://orcid.org/0000-0001-9754-0393>), Lars Kotthoff [aut], Patrick Schratz [aut, cre] (<https://orcid.org/0000-0003-0748-6624>), Julia Schiffner [aut], Jakob Richter [aut], Zachary Jones [aut], Giuseppe Casalicchio [aut] (<https://orcid.org/0000-0001-5324-5966>), Mason Gallo [aut], Jakob Bossek [ctb] (<https://orcid.org/0000-0002-4121-4668>), Erich Studerus [ctb] (<https://orcid.org/0000-0003-4233-0182>), Leonard Judt [ctb], Tobias Kuehn [ctb], Pascal Kerschke [ctb] (<https://orcid.org/0000-0003-2862-1418>), Florian Fendt [ctb], Philipp Probst [ctb] (<https://orcid.org/0000-0001-8402-6790>), Xudong Sun [ctb] (<https://orcid.org/0000-0003-3269-2307>), Janek Thomas [ctb] (<https://orcid.org/0000-0003-4511-6245>), Bruno Vieira [ctb], Laura Beggel [ctb] (<https://orcid.org/0000-0002-8872-8535>), Quay Au [ctb] (<https://orcid.org/0000-0002-5252-8902>), Martin Binder [ctb], Florian Pfisterer [ctb], Stefan Coors [ctb], Steve Bronder [ctb], Alexander Engelhardt [ctb], Christoph Molnar [ctb], Annette Spooner [ctb]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.