F-beta Score
Binary classification measure defined with P as precision()
and R as
recall()
as
(1 + beta^2) * (P*R) / ((beta^2 * P) + R).
It measures the effectiveness of retrieval with respect to a user who attaches beta times as much importance to recall as precision. For beta = 1, this measure is called "F1" score.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("fbeta") msr("fbeta")
Type: "binary"
Range: [0, 1]
Minimize: FALSE
Required prediction: response
The score function calls mlr3measures::fbeta()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.auc
,
mlr_measures_classif.bacc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.ce
,
mlr_measures_classif.costs
,
mlr_measures_classif.dor
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fpr
,
mlr_measures_classif.fp
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mbrier
,
mlr_measures_classif.mcc
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tn
,
mlr_measures_classif.tpr
,
mlr_measures_classif.tp
Other binary classification measures:
mlr_measures_classif.auc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.dor
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fpr
,
mlr_measures_classif.fp
,
mlr_measures_classif.mcc
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tn
,
mlr_measures_classif.tpr
,
mlr_measures_classif.tp
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.