Holdout Resampling
Splits data into a training set and a test set.
Parameter ratio
determines the ratio of observation going into the training set (default: 2/3).
This Resampling can be instantiated via the dictionary mlr_resamplings or with the associated sugar function rsmp()
:
mlr_resamplings$get("holdout") rsmp("holdout")
ratio
(numeric(1)
)
Ratio of observations to put into the training set.
mlr3::Resampling
-> ResamplingHoldout
iters
(integer(1)
)
Returns the number of resampling iterations, depending on the values stored in the param_set
.
new()
Creates a new instance of this R6 class.
ResamplingHoldout$new()
clone()
The objects of this class are cloneable with this method.
ResamplingHoldout$clone(deep = FALSE)
deep
Whether to make a deep clone.
Bischl B, Mersmann O, Trautmann H, Weihs C (2012). “Resampling Methods for Meta-Model Validation with Recommendations for Evolutionary Computation.” Evolutionary Computation, 20(2), 249–275. doi: 10.1162/evco_a_00069.
as.data.table(mlr_resamplings)
for a complete table of all (also dynamically created) Resampling implementations.
# Create a task with 10 observations task = tsk("penguins") task$filter(1:10) # Instantiate Resampling rho = rsmp("holdout", ratio = 0.5) rho$instantiate(task) # Individual sets: rho$train_set(1) rho$test_set(1) intersect(rho$train_set(1), rho$test_set(1)) # Internal storage: rho$instance # simple list
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.