Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

mlr_resamplings_repeated_cv

Repeated Cross-Validation Resampling


Description

Splits data repeats (default: 10) times using a folds-fold (default: 10) cross-validation.

The iteration counter translates to repeats blocks of folds cross-validations, i.e., the first folds iterations belong to a single cross-validation.

Iteration numbers can be translated into folds or repeats with provided methods.

Dictionary

This Resampling can be instantiated via the dictionary mlr_resamplings or with the associated sugar function rsmp():

mlr_resamplings$get("repeated_cv")
rsmp("repeated_cv")

Parameters

  • repeats (integer(1))
    Number of repetitions.

  • folds (integer(1))
    Number of folds.

Super class

mlr3::Resampling -> ResamplingRepeatedCV

Active bindings

iters

(integer(1))
Returns the number of resampling iterations, depending on the values stored in the param_set.

Methods

Public methods


Method new()

Creates a new instance of this R6 class.

Usage
ResamplingRepeatedCV$new()

Method folds()

Translates iteration numbers to fold numbers.

Usage
ResamplingRepeatedCV$folds(iters)
Arguments
iters

(integer())
Iteration number.

Returns

integer() of fold numbers.


Method repeats()

Translates iteration numbers to repetition numbers.

Usage
ResamplingRepeatedCV$repeats(iters)
Arguments
iters

(integer())
Iteration number.

Returns

integer() of repetition numbers.


Method clone()

The objects of this class are cloneable with this method.

Usage
ResamplingRepeatedCV$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

References

Bischl B, Mersmann O, Trautmann H, Weihs C (2012). “Resampling Methods for Meta-Model Validation with Recommendations for Evolutionary Computation.” Evolutionary Computation, 20(2), 249–275. doi: 10.1162/evco_a_00069.

See Also

as.data.table(mlr_resamplings) for a complete table of all (also dynamically created) Resampling implementations.

Examples

# Create a task with 10 observations
task = tsk("penguins")
task$filter(1:10)

# Instantiate Resampling
rrcv = rsmp("repeated_cv", repeats = 2, folds = 3)
rrcv$instantiate(task)
rrcv$iters
rrcv$folds(1:6)
rrcv$repeats(1:6)

# Individual sets:
rrcv$train_set(1)
rrcv$test_set(1)
intersect(rrcv$train_set(1), rrcv$test_set(1))

# Internal storage:
rrcv$instance # table

mlr3

Machine Learning in R - Next Generation

v0.11.0
LGPL-3
Authors
Michel Lang [cre, aut] (<https://orcid.org/0000-0001-9754-0393>), Bernd Bischl [aut] (<https://orcid.org/0000-0001-6002-6980>), Jakob Richter [aut] (<https://orcid.org/0000-0003-4481-5554>), Patrick Schratz [aut] (<https://orcid.org/0000-0003-0748-6624>), Giuseppe Casalicchio [ctb] (<https://orcid.org/0000-0001-5324-5966>), Stefan Coors [ctb] (<https://orcid.org/0000-0002-7465-2146>), Quay Au [ctb] (<https://orcid.org/0000-0002-5252-8902>), Martin Binder [aut], Marc Becker [ctb] (<https://orcid.org/0000-0002-8115-0400>)
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.