Forecast Accuracy Metrics Sets
This is a wrapper for metric_set()
with several common forecast / regression
accuracy metrics included. These are the default time series accuracy
metrics used with modeltime_accuracy()
.
default_forecast_accuracy_metric_set(...)
... |
Add additional |
The primary purpose is to use the default accuracy metrics to calculate the following
forecast accuracy metrics using modeltime_accuracy()
:
Adding additional metrics is possible via ...
.
yardstick::metric_tweak()
- For modifying yardstick
metrics
library(tibble) library(dplyr) library(timetk) library(yardstick) fake_data <- tibble( y = c(1:12, 2*1:12), yhat = c(1 + 1:12, 2*1:12 - 1) ) # ---- HOW IT WORKS ---- # Default Forecast Accuracy Metric Specification default_forecast_accuracy_metric_set() # Create a metric summarizer function from the metric set calc_default_metrics <- default_forecast_accuracy_metric_set() # Apply the metric summarizer to new data calc_default_metrics(fake_data, y, yhat) # ---- ADD MORE PARAMETERS ---- # Can create a version of mase() with seasonality = 12 (monthly) mase12 <- metric_tweak(.name = "mase12", .fn = mase, m = 12) # Add it to the default metric set my_metric_set <- default_forecast_accuracy_metric_set(mase12) my_metric_set # Apply the newly created metric set my_metric_set(fake_data, y, yhat)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.