Calculate Accuracy Metrics
This is a wrapper for yardstick
that simplifies time series regression accuracy metric
calculations from a fitted workflow
(trained workflow) or model_fit
(trained parsnip model).
modeltime_accuracy( object, new_data = NULL, metric_set = default_forecast_accuracy_metric_set(), quiet = TRUE, ... )
object |
A Modeltime Table |
new_data |
A |
metric_set |
A |
quiet |
Hide errors ( |
... |
Not currently used |
The following accuracy metrics are included by default via default_forecast_accuracy_metric_set()
:
A tibble with accuracy estimates.
library(tidymodels) library(tidyverse) library(lubridate) library(timetk) # Data m750 <- m4_monthly %>% filter(id == "M750") # Split Data 80/20 splits <- initial_time_split(m750, prop = 0.9) # --- MODELS --- # Model 1: auto_arima ---- model_fit_arima <- arima_reg() %>% set_engine(engine = "auto_arima") %>% fit(value ~ date, data = training(splits)) # ---- MODELTIME TABLE ---- models_tbl <- modeltime_table( model_fit_arima ) # ---- ACCURACY ---- models_tbl %>% modeltime_calibrate(new_data = testing(splits)) %>% modeltime_accuracy( metric_set = metric_set(mae, rmse, rsq) )
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.