Interactive Accuracy Tables
Converts results from modeltime_accuracy()
into
either interactive (reactable
) or static (gt
) tables.
table_modeltime_accuracy( .data, .round_digits = 2, .sortable = TRUE, .show_sortable = TRUE, .searchable = TRUE, .filterable = FALSE, .expand_groups = TRUE, .title = "Accuracy Table", .interactive = TRUE, ... )
.data |
A |
.round_digits |
Rounds accuracy metrics to a specified number of digits.
If |
.sortable |
Allows sorting by columns.
Only applied to |
.show_sortable |
Shows sorting.
Only applied to |
.searchable |
Adds search input.
Only applied to |
.filterable |
Adds filters to table columns.
Only applied to |
.expand_groups |
Expands groups dropdowns.
Only applied to |
.title |
A title for static ( |
.interactive |
Return interactive or static tables. If |
... |
Additional arguments passed to |
Groups
The function respects dplyr::group_by()
groups and thus scales with multiple groups.
Reactable Output
A reactable()
table is an interactive format that enables live searching and sorting.
When .interactive = TRUE
, a call is made to reactable::reactable()
.
table_modeltime_accuracy()
includes several common options like toggles for sorting and searching.
Additional arguments can be passed to reactable::reactable()
via ...
.
GT Output
A gt
table is an HTML-based table that is "static" (e.g. non-searchable, non-sortable). It's
commonly used in PDF and Word documents that does not support interactive content.
When .interactive = FALSE
, a call is made to gt::gt()
. Arguments can be passed via ...
.
Table customization is implemented using a piping workflow (%>%
).
For more information, refer to the GT Documentation.
A static gt
table or an interactive reactable
table containing
the accuracy information.
library(tidyverse) library(lubridate) library(timetk) library(parsnip) library(rsample) # Data m750 <- m4_monthly %>% filter(id == "M750") # Split Data 80/20 splits <- initial_time_split(m750, prop = 0.9) # --- MODELS --- # Model 1: auto_arima ---- model_fit_arima <- arima_reg() %>% set_engine(engine = "auto_arima") %>% fit(value ~ date, data = training(splits)) # ---- MODELTIME TABLE ---- models_tbl <- modeltime_table( model_fit_arima ) # ---- ACCURACY ---- models_tbl %>% modeltime_calibrate(new_data = testing(splits)) %>% modeltime_accuracy() %>% table_modeltime_accuracy()
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.