All possible regression
Fits all regressions involving one regressor, two regressors, three regressors, and so on. It tests all possible subsets of the set of potential independent variables.
ols_step_all_possible(model, ...) ## S3 method for class 'ols_step_all_possible' plot(x, model = NA, print_plot = TRUE, ...)
model |
An object of class |
... |
Other arguments. |
x |
An object of class |
print_plot |
logical; if |
ols_step_all_possible
returns an object of class "ols_step_all_possible"
.
An object of class "ols_step_all_possible"
is a data frame containing the
following components:
n |
model number |
predictors |
predictors in the model |
rsquare |
rsquare of the model |
adjr |
adjusted rsquare of the model |
predrsq |
predicted rsquare of the model |
cp |
mallow's Cp |
aic |
akaike information criteria |
sbic |
sawa bayesian information criteria |
sbc |
schwarz bayes information criteria |
gmsep |
estimated MSE of prediction, assuming multivariate normality |
jp |
final prediction error |
pc |
amemiya prediction criteria |
sp |
hocking's Sp |
ols_all_subset()
has been deprecated. Instead use ols_step_all_possible()
.
Mendenhall William and Sinsich Terry, 2012, A Second Course in Statistics Regression Analysis (7th edition). Prentice Hall
Other variable selection procedures: ols_step_backward_aic
,
ols_step_backward_p
,
ols_step_best_subset
,
ols_step_both_aic
,
ols_step_forward_aic
,
ols_step_forward_p
model <- lm(mpg ~ disp + hp, data = mtcars) k <- ols_step_all_possible(model) k # plot plot(k)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.