Best subsets regression
Select the subset of predictors that do the best at meeting some well-defined objective criterion, such as having the largest R2 value or the smallest MSE, Mallow's Cp or AIC.
ols_step_best_subset(model, ...) ## S3 method for class 'ols_step_best_subset' plot(x, model = NA, print_plot = TRUE, ...)
model |
An object of class |
... |
Other inputs. |
x |
An object of class |
print_plot |
logical; if |
ols_step_best_subset
returns an object of class "ols_step_best_subset"
.
An object of class "ols_step_best_subset"
is a data frame containing the
following components:
n |
model number |
predictors |
predictors in the model |
rsquare |
rsquare of the model |
adjr |
adjusted rsquare of the model |
predrsq |
predicted rsquare of the model |
cp |
mallow's Cp |
aic |
akaike information criteria |
sbic |
sawa bayesian information criteria |
sbc |
schwarz bayes information criteria |
gmsep |
estimated MSE of prediction, assuming multivariate normality |
jp |
final prediction error |
pc |
amemiya prediction criteria |
sp |
hocking's Sp |
ols_best_subset()
has been deprecated. Instead use ols_step_best_subset()
.
Kutner, MH, Nachtscheim CJ, Neter J and Li W., 2004, Applied Linear Statistical Models (5th edition). Chicago, IL., McGraw Hill/Irwin.
Other variable selection procedures: ols_step_all_possible
,
ols_step_backward_aic
,
ols_step_backward_p
,
ols_step_both_aic
,
ols_step_forward_aic
,
ols_step_forward_p
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars) ols_step_best_subset(model) # plot model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars) k <- ols_step_best_subset(model) plot(k)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.