Stepwise AIC regression
Build regression model from a set of candidate predictor variables by entering and removing predictors based on akaike information criteria, in a stepwise manner until there is no variable left to enter or remove any more.
ols_step_both_aic(model, progress = FALSE, details = FALSE) ## S3 method for class 'ols_step_both_aic' plot(x, print_plot = TRUE, ...)
model |
An object of class |
progress |
Logical; if |
details |
Logical; if |
x |
An object of class |
print_plot |
logical; if |
... |
Other arguments. |
ols_step_both_aic
returns an object of class "ols_step_both_aic"
.
An object of class "ols_step_both_aic"
is a list containing the
following components:
model |
model with the least AIC; an object of class |
predictors |
variables added/removed from the model |
method |
addition/deletion |
aics |
akaike information criteria |
ess |
error sum of squares |
rss |
regression sum of squares |
rsq |
rsquare |
arsq |
adjusted rsquare |
steps |
total number of steps |
ols_stepaic_both()
has been deprecated. Instead use ols_step_both_aic()
.
Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.
Other variable selection procedures: ols_step_all_possible
,
ols_step_backward_aic
,
ols_step_backward_p
,
ols_step_best_subset
,
ols_step_forward_aic
,
ols_step_forward_p
## Not run: # stepwise regression model <- lm(y ~ ., data = stepdata) ols_step_both_aic(model) # stepwise regression plot model <- lm(y ~ ., data = stepdata) k <- ols_step_both_aic(model) plot(k) # final model k$model ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.