Stepwise AIC forward regression
Build regression model from a set of candidate predictor variables by entering predictors based on akaike information criterion, in a stepwise manner until there is no variable left to enter any more.
ols_step_forward_aic(model, ...) ## Default S3 method: ols_step_forward_aic(model, progress = FALSE, details = FALSE, ...) ## S3 method for class 'ols_step_forward_aic' plot(x, print_plot = TRUE, ...)
model |
An object of class |
... |
Other arguments. |
progress |
Logical; if |
details |
Logical; if |
x |
An object of class |
print_plot |
logical; if |
ols_step_forward_aic
returns an object of class "ols_step_forward_aic"
.
An object of class "ols_step_forward_aic"
is a list containing the
following components:
model |
model with the least AIC; an object of class |
steps |
total number of steps |
predictors |
variables added to the model |
aics |
akaike information criteria |
ess |
error sum of squares |
rss |
regression sum of squares |
rsq |
rsquare |
arsq |
adjusted rsquare |
ols_stepaic_forward()
has been deprecated. Instead use ols_step_forward_aic()
.
Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.
Other variable selection procedures: ols_step_all_possible
,
ols_step_backward_aic
,
ols_step_backward_p
,
ols_step_best_subset
,
ols_step_both_aic
,
ols_step_forward_p
# stepwise forward regression model <- lm(y ~ ., data = surgical) ols_step_forward_aic(model) # stepwise forward regression plot model <- lm(y ~ ., data = surgical) k <- ols_step_forward_aic(model) plot(k) # final model k$model
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.