Average Treatment Effects Computation
Use the g-formula or the IPW or the double robust estimator to estimate the average treatment effect (absolute risk difference or ratio) based on Cox regression with or without competing risks.
ate( event, treatment, censor = NULL, data, data.index = NULL, formula, estimator = NULL, strata = NULL, contrasts = NULL, allContrasts = NULL, times, cause = NA, landmark, se = TRUE, iid = (B == 0) && (se || band), known.nuisance = FALSE, band = FALSE, B = 0, seed, handler = "foreach", mc.cores = 1, cl = NULL, verbose = TRUE, ... )
event |
Outcome model which describes how the probability of experiencing a terminal event depends
on treatment and covariates. The object carry its own call and
have a |
treatment |
Treatment model which describes how the probability of being allocated to a treatment group depends
on covariates. The object must be a |
censor |
Censoring model which describes how the probability of being censored depends
on treatment and covariates. The object must be a |
data |
[data.frame or data.table] Data set in which to evaluate risk predictions based on the outcome model |
data.index |
[numeric vector] Position of the observation in argument data relative to the dataset used to obtain the argument event, treatment, censor. Only necessary for the standard errors when computing the Average Treatment Effects on a subset of the data set. |
formula |
For analyses with time-dependent covariates, the response formula. See examples. |
estimator |
[character] The type of estimator used to compute the average treatment effect.
Can be |
strata |
[character] Strata variable on which to compute the average risk. Incompatible with treatment. Experimental. |
contrasts |
[character vector] levels of the treatment variable for which the risks should be assessed and compared. Default is to consider all levels. |
allContrasts |
[2-row character matrix] levels of the treatment variable to be compared. Default is to consider all pairwise comparisons. |
times |
[numeric vector] Time points at which to evaluate average treatment effects. |
cause |
[integer/character] the cause of interest. |
landmark |
for models with time-dependent covariates the landmark time(s) of evaluation.
In this case, argument |
se |
[logical] If |
iid |
[logical] If |
known.nuisance |
[logical] If |
band |
[logical] If |
B |
[integer, >0] the number of bootstrap replications used to compute the confidence intervals. If it equals 0, then the influence function is used to compute Wald-type confidence intervals/bands. |
seed |
[integer, >0] sed number used to generate seeds for bootstrap and to achieve reproducible results. |
handler |
[character] Parallel handler for bootstrap.
|
mc.cores |
[integer, >0] The number of cores to use,
i.e., the upper limit for the number of child processes that run simultaneously.
Passed to |
cl |
A parallel socket cluster used to perform cluster calculation in parallel (output by |
verbose |
[logical] If |
... |
passed to predictRisk |
Brice Ozenne broz@sund.ku.dk and Thomas Alexander Gerds tag@biostat.ku.dk
as.data.table
to extract the estimates in a data.table
object.
autoplot.ate
for a graphical representation the standardized risks.
confint.ate
to compute (pointwise/simultaneous) confidence intervals and (unadjusted/adjusted) p-values, possibly using a transformation.
summary.ate
for a table containing the standardized risks over time and treatment/strata.
library(survival) library(rms) library(prodlim) library(data.table) set.seed(10) #### Survival settings #### #### ATE with Cox model #### ## generate data n <- 100 dtS <- sampleData(n, outcome="survival") dtS$time <- round(dtS$time,1) dtS$X1 <- factor(rbinom(n, prob = c(0.3,0.4) , size = 2), labels = paste0("T",0:2)) ## estimate the Cox model fit <- cph(formula = Surv(time,event)~ X1+X2,data=dtS,y=TRUE,x=TRUE) ## compute the ATE at times 5, 6, 7, and 8 using X1 as the treatment variable ## standard error computed using the influence function ## confidence intervals / p-values based on asymptotic results ateFit1a <- ate(fit, data = dtS, treatment = "X1", times = 5:8) summary(ateFit1a) summary(ateFit1a, short = TRUE, type = "meanRisk") summary(ateFit1a, short = TRUE, type = "diffRisk") summary(ateFit1a, short = TRUE, type = "ratioRisk") ## Not run: ## same as before with in addition the confidence bands / adjusted p-values ## (argument band = TRUE) ateFit1b <- ate(fit, data = dtS, treatment = "X1", times = 5:8, band = TRUE) summary(ateFit1b) ## by default bands/adjuste p-values computed separately for each treatment modality summary(ateFit1b, band = 1, se = FALSE, type = "diffRisk", short = TRUE, quantile = TRUE) ## adjustment over treatment and time using the band argument of confint summary(ateFit1b, band = 2, se = FALSE, type = "diffRisk", short = TRUE, quantile = TRUE) ## confidence intervals / p-values computed using 1000 boostrap samples ## (argument se = TRUE and B = 1000) ateFit1c <- ate(fit, data = dtS, treatment = "X1", times = 5:8, se = TRUE, B = 50, handler = "mclapply") ## NOTE: for real applications 50 bootstrap samples is not enough ## same but using 2 cpus for generating and analyzing the boostrap samples ## (parallel computation, argument mc.cores = 2) ateFit1d <- ate(fit, data = dtS, treatment = "X1", times = 5:8, se = TRUE, B = 50, mc.cores = 2) ## manually defining the cluster to be used ## useful when specific packages need to be loaded in each cluster fit <- cph(formula = Surv(time,event)~ X1+X2+rcs(X6),data=dtS,y=TRUE,x=TRUE) cl <- parallel::makeCluster(2) parallel::clusterEvalQ(cl, library(rms)) ateFit1e <- ate(fit, data = dtS, treatment = "X1", times = 5:8, se = TRUE, B = 50, handler = "foreach", cl = cl) ## End(Not run) #### Survival settings without censoring #### #### ATE with glm #### ## generate data n <- 100 dtB <- sampleData(n, outcome="binary") dtB[, X2 := as.numeric(X2)] ## estimate a logistic regression model fit <- glm(formula = Y ~ X1+X2, data=dtB, family = "binomial") ## compute the ATE using X1 as the treatment variable ## only point estimate (argument se = FALSE) ateFit1a <- ate(fit, data = dtB, treatment = "X1", se = FALSE) ateFit1a ## Not run: ## with confidence intervals ateFit1b <- ate(fit, data = dtB, treatment = "X1", times = 5) ## just for having a nice output not used in computations summary(ateFit1b, short = TRUE) ## using the lava package library(lava) ateLava <- estimate(fit, function(p, data){ a <- p["(Intercept)"] ; b <- p["X11"] ; c <- p["X2"] ; R.X11 <- expit(a + b + c * data[["X2"]]) R.X10 <- expit(a + c * data[["X2"]]) list(risk0=R.X10,risk1=R.X11,riskdiff=R.X11-R.X10)}, average=TRUE) ateLava ## End(Not run) #### Competing risks settings #### #### ATE with cause specific Cox regression #### ## generate data n <- 500 set.seed(10) dt <- sampleData(n, outcome="competing.risks") dt$X1 <- factor(rbinom(n, prob = c(0.2,0.3) , size = 2), labels = paste0("T",0:2)) ## estimate cause specific Cox model fitCR <- CSC(Hist(time,event)~ X1+X8,data=dt,cause=1) ## compute the ATE at times 1, 5, 10 using X1 as the treatment variable ateFit2a <- ate(fitCR, data = dt, treatment = "X1", times = c(1,5,10), cause = 1, se = TRUE, band = TRUE) summary(ateFit2a) as.data.table(ateFit2a) #### Double robust estimator #### ## Not run: ## generate data n <- 500 set.seed(10) dt <- sampleData(n, outcome="competing.risks") dt$time <- round(dt$time,1) dt$X1 <- factor(rbinom(n, prob = c(0.4) , size = 1), labels = paste0("T",0:1)) ## working models m.event <- CSC(Hist(time,event)~ X1+X2+X3+X5+X8,data=dt) m.censor <- coxph(Surv(time,event==0)~ X1+X2+X3+X5+X8,data=dt, x = TRUE, y = TRUE) m.treatment <- glm(X1~X2+X3+X5+X8,data=dt,family=binomial(link="logit")) ## prediction + average ateRobust <- ate(event = m.event, treatment = m.treatment, censor = m.censor, data = dt, times = 5:10, cause = 1, band = TRUE) ## compare various estimators ateRobust3 <- ate(event = m.event, treatment = m.treatment, censor = m.censor, estimator = c("GFORMULA","IPTW","AIPTW"), data = dt, times = c(5:10), cause = 1, se = TRUE) print(setkeyv(as.data.table(ateRobust3, type = "meanRisk"),"time")) print(setkeyv(as.data.table(ateRobust3, type = "diffRisk"),"time")) ## End(Not run) #### time-dependent covariates ### ## Not run: library(survival) fit <- coxph(Surv(time, status) ~ celltype+karno + age + trt, veteran) vet2 <- survSplit(Surv(time, status) ~., veteran, cut=c(60, 120), episode ="timegroup") fitTD <- coxph(Surv(tstart, time, status) ~ celltype+karno + age + trt, data= vet2,x=1) set.seed(16) resVet <- ate(fitTD,formula=Hist(entry=tstart,time=time,event=status)~1, data = vet2, treatment = "celltype", times=5,verbose=1, landmark = c(0,30,60,90), cause = 1, B = 50, se = 1, band = FALSE, mc.cores=1) summary(resVet) ## End(Not run) ## Not run: set.seed(137) d=sampleDataTD(127) library(survival) d[,status:=1*(event==1)] d[,X3:=as.factor(X3)] ## ignore competing risks cox1TD <- coxph(Surv(start,time, status,type="counting") ~ X3+X5+X6+X8, data=d, x = TRUE) resTD1 <- ate(cox1TD,formula=Hist(entry=start,time=time,event=status)~1, data = d, treatment = "X3", contrasts = NULL, times=.5,verbose=1, landmark = c(0,0.5,1), B = 20, se = 1, band = FALSE, mc.cores=1) resTD1 ## account for competing risks cscTD <- CSC(Hist(time=time, event=event,entry=start) ~ X3+X5+X6+X8, data=d) set.seed(16) resTD <- ate(cscTD,formula=Hist(entry=start,time=time,event=event)~1, data = d, treatment = "X3", contrasts = NULL, times=.5,verbose=1, landmark = c(0,0.5,1), cause = 1, B = 20, se = 1, band = FALSE, mc.cores=1) resTD ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.