VPC function for categorical
Creates a VPC plot from observed and simulation data for categorical variables.
vpc_cat( sim = NULL, obs = NULL, psn_folder = NULL, bins = "jenks", n_bins = "auto", bin_mid = "mean", obs_cols = NULL, sim_cols = NULL, software = "auto", show = NULL, ci = c(0.05, 0.95), uloq = NULL, lloq = NULL, xlab = NULL, ylab = NULL, title = NULL, smooth = TRUE, vpc_theme = NULL, facet = "wrap", labeller = NULL, plot = TRUE, vpcdb = FALSE, verbose = FALSE )
sim |
a data.frame with observed data, containing the independent and dependent variable, a column indicating the individual, and possibly covariates. E.g. load in from NONMEM using read_table_nm |
obs |
a data.frame with observed data, containing the independent and dependent variable, a column indicating the individual, and possibly covariates. E.g. load in from NONMEM using read_table_nm |
psn_folder |
instead of specifying "sim" and "obs", specify a PsN-generated VPC-folder |
bins |
either "density", "time", or "data", "none", or one of the approaches available in classInterval() such as "jenks" (default) or "pretty", or a numeric vector specifying the bin separators. |
n_bins |
when using the "auto" binning method, what number of bins to aim for |
bin_mid |
either "mean" for the mean of all timepoints (default) or "middle" to use the average of the bin boundaries. |
obs_cols |
observation dataset column names (list elements: "dv", "idv", "id", "pred") |
sim_cols |
simulation dataset column names (list elements: "dv", "idv", "id", "pred") |
software |
name of software platform using (e.g. nonmem, phoenix) |
show |
what to show in VPC (obs_ci, pi, pi_as_area, pi_ci, obs_median, sim_median, sim_median_ci) |
ci |
confidence interval to plot. Default is (0.05, 0.95) |
uloq |
Number or NULL indicating upper limit of quantification. Default is NULL. |
lloq |
Number or NULL indicating lower limit of quantification. Default is NULL. |
xlab |
label for x-axis |
ylab |
label for y-axis |
title |
title |
smooth |
"smooth" the VPC (connect bin midpoints) or show bins as rectangular boxes. Default is TRUE. |
vpc_theme |
theme to be used in VPC. Expects list of class vpc_theme created with function vpc_theme() |
facet |
either "wrap", "columns", or "rows" |
labeller |
ggplot2 labeller function to be passed to underlying ggplot object |
plot |
Boolean indicting whether to plot the ggplot2 object after creation. Default is FALSE. |
vpcdb |
boolean whether to return the underlying vpcdb rather than the plot |
verbose |
show debugging information (TRUE or FALSE) |
a list containing calculated VPC information (when vpcdb=TRUE), or a ggplot2 object (default)
## See vpc.ronkeizer.com for more documentation and examples library(vpc) # simple function to simulate categorical data for single individual sim_id <- function(id = 1) { n <- 10 logit <- function(x) exp(x) / (1+exp(x)) data.frame(id = id, time = seq(1, n, length.out = n), dv = round(logit((1:n) - n/2 + rnorm(n, 0, 1.5))) ) } ## simple function to simulate categorical data for a trial sim_trial <- function(i = 1, n = 20) { # function to simulate categorical data for a trial data.frame(sim = i, do.call("rbind", lapply(1:n, sim_id))) } ## simulate single trial for 20 individuals obs <- sim_trial(n = 20) ## simulate 200 trials of 20 individuals sim <- do.call("rbind", lapply(1:200, sim_trial, n = 20)) ## Plot categorical VPC vpc_cat(sim = sim, obs = obs)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.