Cross-validation functional regression with scalar response using kernel estimation.
Computes functional regression between functional explanatory variables and scalar response using asymmetric kernel estimation by cross-validation method.
fregre.np.cv( fdataobj, y, h = NULL, Ker = AKer.norm, metric = metric.lp, type.CV = GCV.S, type.S = S.NW, par.CV = list(trim = 0), par.S = list(w = 1), ... )
fdataobj | 
 
  | 
y | 
 Scalar response with length   | 
h | 
 Bandwidth,   | 
Ker | 
 Type of asymmetric kernel used, by default asymmetric normal kernel.  | 
metric | 
 Metric function, by default   | 
type.CV | 
 Type of cross-validation. By default generalized
cross-validation   | 
type.S | 
 Type of smothing matrix   | 
par.CV | 
 List of parameters for   | 
par.S | 
 List of parameters for   | 
... | 
 Arguments to be passed for   | 
The non-parametric functional regression model can be written as follows
y_i =r(X_i) + ε_i
where the unknown smooth real function r is estimated using kernel estimation by means of
\hat{r}(X)=\frac{∑_{i=1}^{n}{K(h^{-1}d(X,X_{i}))y_{i}}}{∑_{i=1}^{n}{K(h^{-1}d(X,X_{i}))}}
where K is an kernel function (see Ker argument), h is
the smoothing parameter and d is a metric or a semi-metric (see
metric argument).
The function estimates the value of smoothing parameter or the bandwidth
through the cross validation methods: GCV.S or
CV.S. It computes the distance between curves using the
metric.lp, although any other semimetric could be used (see
semimetric.basis or semimetric.NPFDA functions).
Different asymmetric kernels can be used, see
Kernel.asymmetric.
Return:
call The matched call. 
residuals y minus fitted values. 
fitted.values Estimated scalar response. 
df The residual degrees of freedom. 
r2 Coefficient of determination. 
sr2 Residual variance. 
H Hat matrix. 
y Response. 
fdataobj Functional explanatory data.
mdist Distance matrix between x and newx. 
Ker Asymmetric kernel used. 
gcv CV or GCV values. 
h.opt smoothing parameter or bandwidth that minimizes CV or GCV method. 
h Vector of smoothing parameter or bandwidth. 
cv List with the fitted values and residuals estimated by CV, without the same curve.
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@usc.es
Ferraty, F. and Vieu, P. (2006). Nonparametric functional data analysis. Springer Series in Statistics, New York.
Hardle, W. Applied Nonparametric Regression. Cambridge University Press, 1994.
Febrero-Bande, M., Oviedo de la Fuente, M. (2012). Statistical Computing in Functional Data Analysis: The R Package fda.usc. Journal of Statistical Software, 51(4), 1-28. http://www.jstatsoft.org/v51/i04/
See Also as: fregre.np,
summary.fregre.fd and predict.fregre.fd .
Alternative method: fregre.basis.cv and
fregre.np.cv.
## Not run: data(tecator) absorp=tecator$absorp.fdata ind=1:129 x=absorp[ind,] y=tecator$y$Fat[ind] Ker=AKer.tri res.np=fregre.np.cv(x,y,Ker=Ker) summary(res.np) res.np2=fregre.np.cv(x,y,type.CV=GCV.S,criteria="Shibata") summary(res.np2) ## Example with other semimetrics (not run) res.pca1=fregre.np.cv(x,y,Ker=Ker,metric=semimetric.pca,q=1) summary(res.pca1) res.deriv=fregre.np.cv(x,y,Ker=Ker,metric=semimetric.deriv) summary(res.deriv) x.d2=fdata.deriv(x,nderiv=1,method="fmm",class.out='fdata') res.deriv2=fregre.np.cv(x.d2,y,Ker=Ker) summary(res.deriv2) x.d3=fdata.deriv(x,nderiv=1,method="bspline",class.out='fdata') res.deriv3=fregre.np.cv(x.d3,y,Ker=Ker) summary(res.deriv3) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.