Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

ActivityRegularization

Layer that applies an update to the cost function based input activity.


Description

Layer that applies an update to the cost function based input activity.

Usage

ActivityRegularization(l1 = 0, l2 = 0, input_shape = NULL)

Arguments

l1

L1 regularization factor (positive float).

l2

L2 regularization factor (positive float).

input_shape

only need when first layer of a model; sets the input shape of the data

Author(s)

Taylor B. Arnold, taylor.arnold@acm.org

References

See Also

Examples

if(keras_available()) {
  X_train <- matrix(rnorm(100 * 10), nrow = 100)
  Y_train <- to_categorical(matrix(sample(0:2, 100, TRUE), ncol = 1), 3)

  mod <- Sequential()
  mod$add(Dense(units = 50, input_shape = dim(X_train)[2]))
  mod$add(Dropout(rate = 0.5))
  mod$add(Activation("relu"))
  mod$add(Dense(units = 3))
  mod$add(ActivityRegularization(l1 = 1))
  mod$add(Activation("softmax"))
  keras_compile(mod,  loss = 'categorical_crossentropy', optimizer = RMSprop())

  keras_fit(mod, X_train, Y_train, batch_size = 32, epochs = 5,
            verbose = 0, validation_split = 0.2)
}

kerasR

R Interface to the Keras Deep Learning Library

v0.6.1
LGPL-2
Authors
Taylor Arnold [aut, cre]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.