Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

Flatten

Flattens the input. Does not affect the batch size.


Description

Flattens the input. Does not affect the batch size.

Usage

Flatten(input_shape = NULL)

Arguments

input_shape

only need when first layer of a model; sets the input shape of the data

Author(s)

Taylor B. Arnold, taylor.arnold@acm.org

References

See Also

Examples

if(keras_available()) {
  X_train <- matrix(rnorm(100 * 10), nrow = 100)
  Y_train <- to_categorical(matrix(sample(0:2, 100, TRUE), ncol = 1), 3)

  mod <- Sequential()
  mod$add(Dense(units = 50, input_shape = dim(X_train)[2]))
  mod$add(Dropout(rate = 0.5))
  mod$add(Activation("relu"))
  mod$add(Dense(units = 3))
  mod$add(ActivityRegularization(l1 = 1))
  mod$add(Activation("softmax"))
  keras_compile(mod,  loss = 'categorical_crossentropy', optimizer = RMSprop())

  keras_fit(mod, X_train, Y_train, batch_size = 32, epochs = 5,
            verbose = 0, validation_split = 0.2)
}

if (keras_available()) {
  X_train <- array(rnorm(100 * 28 * 28), dim = c(100, 28, 28, 1))
  Y_train <- to_categorical(matrix(sample(0:2, 100, TRUE), ncol = 1), 3)
  
  mod <- Sequential()
  mod$add(Conv2D(filters = 2, kernel_size = c(2, 2),
                 input_shape = c(28, 28, 1)))
  mod$add(Activation("relu"))
  mod$add(MaxPooling2D(pool_size=c(2, 2)))
  mod$add(LocallyConnected2D(filters = 2, kernel_size = c(2, 2)))
  mod$add(Activation("relu"))
  mod$add(MaxPooling2D(pool_size=c(2, 2)))
  mod$add(Dropout(0.25))
  
  mod$add(Flatten())
  mod$add(Dropout(0.5))
  mod$add(Dense(3, activation='softmax'))
  
  keras_compile(mod, loss='categorical_crossentropy', optimizer=RMSprop())
  keras_fit(mod, X_train, Y_train, verbose = 0)
}

kerasR

R Interface to the Keras Deep Learning Library

v0.6.1
LGPL-2
Authors
Taylor Arnold [aut, cre]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.