Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

Dropout

Applies Dropout to the input.


Description

Applies Dropout to the input.

Usage

Dropout(rate, noise_shape = NULL, seed = NULL, input_shape = NULL)

Arguments

rate

float between 0 and 1. Fraction of the input units to drop.

noise_shape

1D integer tensor representing the shape of the the input.

seed

A Python integer to use as random seed.

input_shape

only need when first layer of a model; sets the input shape of the data

Author(s)

Taylor B. Arnold, taylor.arnold@acm.org

References

See Also

Examples

if (keras_available()) {
  X_train <- array(rnorm(100 * 28 * 28), dim = c(100, 28, 28, 1))
  Y_train <- to_categorical(matrix(sample(0:2, 100, TRUE), ncol = 1), 3)
  
  mod <- Sequential()
  mod$add(Conv2D(filters = 2, kernel_size = c(2, 2),
                 input_shape = c(28, 28, 1)))
  mod$add(Activation("relu"))
  mod$add(MaxPooling2D(pool_size=c(2, 2)))
  mod$add(LocallyConnected2D(filters = 2, kernel_size = c(2, 2)))
  mod$add(Activation("relu"))
  mod$add(MaxPooling2D(pool_size=c(2, 2)))
  mod$add(Dropout(0.25))
  
  mod$add(Flatten())
  mod$add(Dropout(0.5))
  mod$add(Dense(3, activation='softmax'))
  
  keras_compile(mod, loss='categorical_crossentropy', optimizer=RMSprop())
  keras_fit(mod, X_train, Y_train, verbose = 0)
}

kerasR

R Interface to the Keras Deep Learning Library

v0.6.1
LGPL-2
Authors
Taylor Arnold [aut, cre]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.