Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

GaussianNoise

Apply Gaussian noise layer


Description

The function GaussianNoise applies additive noise, centered around 0 and GaussianDropout applied multiplicative noise centered around 1.

Usage

GaussianNoise(stddev = 1, input_shape = NULL)

GaussianDropout(rate = 0.5, input_shape = NULL)

Arguments

stddev

standard deviation of the random Gaussian

input_shape

only need when first layer of a model; sets the input shape of the data

rate

float, drop probability

Author(s)

Taylor B. Arnold, taylor.arnold@acm.org

References

See Also

Examples

if(keras_available()) {
  X_train <- matrix(rnorm(100 * 10), nrow = 100)
  Y_train <- to_categorical(matrix(sample(0:2, 100, TRUE), ncol = 1), 3)
  
  mod <- Sequential()
  mod$add(Dense(units = 50, input_shape = dim(X_train)[2]))
  mod$add(Dropout(rate = 0.5))
  mod$add(Activation("relu"))
  mod$add(GaussianNoise())
  mod$add(GaussianDropout())
  mod$add(Dense(units = 3))
  mod$add(ActivityRegularization(l1 = 1))
  mod$add(Activation("softmax"))
  keras_compile(mod,  loss = 'categorical_crossentropy', optimizer = RMSprop())
  
  keras_fit(mod, X_train, Y_train, batch_size = 32, epochs = 5,
            verbose = 0, validation_split = 0.2)
}

kerasR

R Interface to the Keras Deep Learning Library

v0.6.1
LGPL-2
Authors
Taylor Arnold [aut, cre]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.