Linear SVM Classifier
Implementation of the Linear Support Vector Classifier. Can be solved in the Dual formulation, which is equivalent to SVM or the Primal formulation.
LinearSVM(X, y, C = 1, method = "Dual", scale = TRUE, eps = 1e-09, reltol = 1e-13, maxit = 100)
X | 
 matrix; Design matrix for labeled data  | 
y | 
 factor or integer vector; Label vector  | 
C | 
 Cost variable  | 
method | 
 Estimation procedure c("Dual","Primal","BGD")  | 
scale | 
 Whether a z-transform should be applied (default: TRUE)  | 
eps | 
 Small value to ensure positive definiteness of the matrix in QP formulation  | 
reltol | 
 relative tolerance using during BFGS optimization  | 
maxit | 
 Maximum number of iterations for BFGS optimization  | 
S4 object of type LinearSVM
Other RSSL classifiers: 
EMLeastSquaresClassifier,
EMLinearDiscriminantClassifier,
GRFClassifier,
ICLeastSquaresClassifier,
ICLinearDiscriminantClassifier,
KernelLeastSquaresClassifier,
LaplacianKernelLeastSquaresClassifier(),
LaplacianSVM,
LeastSquaresClassifier,
LinearDiscriminantClassifier,
LinearTSVM(),
LogisticLossClassifier,
LogisticRegression,
MCLinearDiscriminantClassifier,
MCNearestMeanClassifier,
MCPLDA,
MajorityClassClassifier,
NearestMeanClassifier,
QuadraticDiscriminantClassifier,
S4VM,
SVM,
SelfLearning,
TSVM,
USMLeastSquaresClassifier,
WellSVM,
svmlin()
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.