(Regularized) Logistic Regression implementation
Implementation of Logistic Regression that is useful for comparisons with semi-supervised logistic regression implementations, such as EntropyRegularizedLogisticRegression.
LogisticRegression(X, y, lambda = 0, intercept = TRUE, scale = FALSE, init = NA, x_center = FALSE)
X | 
 matrix; Design matrix for labeled data  | 
y | 
 factor or integer vector; Label vector  | 
lambda | 
 numeric; L2 regularization parameter  | 
intercept | 
 logical; Whether an intercept should be included  | 
scale | 
 logical; Should the features be normalized? (default: FALSE)  | 
init | 
 numeric; Initialization of parameters for the optimization  | 
x_center | 
 logical; Should the features be centered?  | 
Other RSSL classifiers: 
EMLeastSquaresClassifier,
EMLinearDiscriminantClassifier,
GRFClassifier,
ICLeastSquaresClassifier,
ICLinearDiscriminantClassifier,
KernelLeastSquaresClassifier,
LaplacianKernelLeastSquaresClassifier(),
LaplacianSVM,
LeastSquaresClassifier,
LinearDiscriminantClassifier,
LinearSVM,
LinearTSVM(),
LogisticLossClassifier,
MCLinearDiscriminantClassifier,
MCNearestMeanClassifier,
MCPLDA,
MajorityClassClassifier,
NearestMeanClassifier,
QuadraticDiscriminantClassifier,
S4VM,
SVM,
SelfLearning,
TSVM,
USMLeastSquaresClassifier,
WellSVM,
svmlin()
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.