Self-Learning approach to Semi-supervised Learning
Use self-learning (also known as Yarowsky's algorithm or pseudo-labeling) to turn any supervised classifier into a semi-supervised method by iteratively labeling the unlabeled objects and adding these predictions to the set of labeled objects until the classifier converges.
SelfLearning(X, y, X_u = NULL, method, prob = FALSE, cautious = FALSE, max_iter = 100, ...)
X | 
 matrix; Design matrix for labeled data  | 
y | 
 factor or integer vector; Label vector  | 
X_u | 
 matrix; Design matrix for unlabeled data  | 
method | 
 Supervised classifier to use. Any function that accepts as its first argument a design matrix X and as its second argument a vector of labels y and that has a predict method.  | 
prob | 
 Not used  | 
cautious | 
 Not used  | 
max_iter | 
 integer; Maximum number of iterations  | 
... | 
 additional arguments to be passed to method  | 
McLachlan, G.J., 1975. Iterative Reclassification Procedure for Constructing an Asymptotically Optimal Rule of Allocation in Discriminant Analysis. Journal of the American Statistical Association, 70(350), pp.365-369.
Yarowsky, D., 1995. Unsupervised word sense disambiguation rivaling supervised methods. Proceedings of the 33rd annual meeting on Association for Computational Linguistics, pp.189-196.
Other RSSL classifiers: 
EMLeastSquaresClassifier,
EMLinearDiscriminantClassifier,
GRFClassifier,
ICLeastSquaresClassifier,
ICLinearDiscriminantClassifier,
KernelLeastSquaresClassifier,
LaplacianKernelLeastSquaresClassifier(),
LaplacianSVM,
LeastSquaresClassifier,
LinearDiscriminantClassifier,
LinearSVM,
LinearTSVM(),
LogisticLossClassifier,
LogisticRegression,
MCLinearDiscriminantClassifier,
MCNearestMeanClassifier,
MCPLDA,
MajorityClassClassifier,
NearestMeanClassifier,
QuadraticDiscriminantClassifier,
S4VM,
SVM,
TSVM,
USMLeastSquaresClassifier,
WellSVM,
svmlin()
data(testdata) t_self <- SelfLearning(testdata$X,testdata$y,testdata$X_u,method=NearestMeanClassifier) t_sup <- NearestMeanClassifier(testdata$X,testdata$y) # Classification Error 1-mean(predict(t_self, testdata$X_test)==testdata$y_test) 1-mean(predict(t_sup, testdata$X_test)==testdata$y_test) loss(t_self, testdata$X_test, testdata$y_test)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.