Logistic Loss Classifier
Find the linear classifier which minimizing the logistic loss on the training set, optionally using L2 regularization.
LogisticLossClassifier(X, y, lambda = 0, intercept = TRUE, scale = FALSE, init = NA, x_center = FALSE, ...)
X | 
 Design matrix, intercept term is added within the function  | 
y | 
 Vector with class assignments  | 
lambda | 
 Regularization parameter used for l2 regularization  | 
intercept | 
 TRUE if an intercept should be added to the model  | 
scale | 
 If TRUE, apply a z-transform to all observations in X and X_u before running the regression  | 
init | 
 Starting parameter vector for gradient descent  | 
x_center | 
 logical; Whether the feature vectors should be centered  | 
... | 
 additional arguments  | 
S4 object with the following slots
w | 
 the weight vector of the linear classifier  | 
classnames | 
 vector with names of the classes  | 
Other RSSL classifiers: 
EMLeastSquaresClassifier,
EMLinearDiscriminantClassifier,
GRFClassifier,
ICLeastSquaresClassifier,
ICLinearDiscriminantClassifier,
KernelLeastSquaresClassifier,
LaplacianKernelLeastSquaresClassifier(),
LaplacianSVM,
LeastSquaresClassifier,
LinearDiscriminantClassifier,
LinearSVM,
LinearTSVM(),
LogisticRegression,
MCLinearDiscriminantClassifier,
MCNearestMeanClassifier,
MCPLDA,
MajorityClassClassifier,
NearestMeanClassifier,
QuadraticDiscriminantClassifier,
S4VM,
SVM,
SelfLearning,
TSVM,
USMLeastSquaresClassifier,
WellSVM,
svmlin()
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.