svmlin implementation by Sindhwani & Keerthi (2006)
R interface to the svmlin code by Vikas Sindhwani and S. Sathiya Keerthi for fast linear transductive SVMs.
svmlin(X, y, X_u = NULL, algorithm = 1, lambda = 1, lambda_u = 1, max_switch = 10000, pos_frac = 0.5, Cp = 1, Cn = 1, verbose = FALSE, intercept = TRUE, scale = FALSE, x_center = FALSE)
X | 
 Matrix or sparseMatrix containing the labeled feature vectors, without intercept  | 
y | 
 factor containing class assignments  | 
X_u | 
 Matrix or sparseMatrix containing the unlabeled feature vectors, without intercept  | 
algorithm | 
 integer; Algorithm choice, see details (default:1)  | 
lambda | 
 double; Regularization parameter lambda (default 1)  | 
lambda_u | 
 double; Regularization parameter lambda_u (default 1)  | 
max_switch | 
 integer; Maximum number of switches in TSVM (default 10000)  | 
pos_frac | 
 double; Positive class fraction of unlabeled data (default 0.5)  | 
Cp | 
 double; Relative cost for positive examples (only available with algorithm 1)  | 
Cn | 
 double; Relative cost for positive examples (only available with algorithm 1)  | 
verbose | 
 logical; Controls the verbosity of the output  | 
intercept | 
 logical; Whether an intercept should be included  | 
scale | 
 logical; Should the features be normalized? (default: FALSE)  | 
x_center | 
 logical; Should the features be centered?  | 
The codes to select the algorithm are the following: 0. Regularized Least Squares Classification 1. SVM (L2-SVM-MFN) 2. Multi-switch Transductive SVM (using L2-SVM-MFN) 3. Deterministic Annealing Semi-supervised SVM (using L2-SVM-MFN).
Vikas Sindhwani and S. Sathiya Keerthi. Large Scale Semi-supervised Linear SVMs. Proceedings of ACM SIGIR, 2006 @references V. Sindhwani and S. Sathiya Keerthi. Newton Methods for Fast Solution of Semi-supervised Linear SVMs. Book Chapter in Large Scale Kernel Machines, MIT Press, 2006
Other RSSL classifiers: 
EMLeastSquaresClassifier,
EMLinearDiscriminantClassifier,
GRFClassifier,
ICLeastSquaresClassifier,
ICLinearDiscriminantClassifier,
KernelLeastSquaresClassifier,
LaplacianKernelLeastSquaresClassifier(),
LaplacianSVM,
LeastSquaresClassifier,
LinearDiscriminantClassifier,
LinearSVM,
LinearTSVM(),
LogisticLossClassifier,
LogisticRegression,
MCLinearDiscriminantClassifier,
MCNearestMeanClassifier,
MCPLDA,
MajorityClassClassifier,
NearestMeanClassifier,
QuadraticDiscriminantClassifier,
S4VM,
SVM,
SelfLearning,
TSVM,
USMLeastSquaresClassifier,
WellSVM
data(svmlin_example)
t_svmlin_1 <- svmlin(svmlin_example$X_train[1:50,],
                 svmlin_example$y_train,X_u=NULL, lambda = 0.001)
t_svmlin_2 <- svmlin(svmlin_example$X_train[1:50,],
                       svmlin_example$y_train,
                       X_u=svmlin_example$X_train[-c(1:50),], 
                       lambda = 10,lambda_u=100,algorithm = 2)
                       
# Calculate Accuracy
mean(predict(t_svmlin_1,svmlin_example$X_test)==svmlin_example$y_test)
mean(predict(t_svmlin_2,svmlin_example$X_test)==svmlin_example$y_test)
data(testdata)
g_svm <- SVM(testdata$X,testdata$y)
g_sup <- svmlin(testdata$X,testdata$y,testdata$X_u,algorithm = 3)
g_semi <- svmlin(testdata$X,testdata$y,testdata$X_u,algorithm = 2)
mean(predict(g_svm,testdata$X_test)==testdata$y_test)
mean(predict(g_sup,testdata$X_test)==testdata$y_test)
mean(predict(g_semi,testdata$X_test)==testdata$y_test)Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.