Embedding layer
Turns positive integers (indexes) into dense vectors of fixed size.
Embedding(input_dim, output_dim, embeddings_initializer = "uniform", embeddings_regularizer = NULL, embeddings_constraint = NULL, mask_zero = FALSE, input_length = NULL, input_shape = NULL)
| input_dim | int > 0. Size of the vocabulary, ie. 1 + maximum integer index occurring in the input data. | 
| output_dim | int >= 0. Dimension of the dense embedding. | 
| embeddings_initializer | Initializer for the embeddings matrix | 
| embeddings_regularizer | Regularizer function applied to the embeddings matrix | 
| embeddings_constraint | Constraint function applied to the embeddings matrix | 
| mask_zero | Whether or not the input value 0 is a special "padding" value that should be masked out. | 
| input_length | Length of input sequences, when it is constant. | 
| input_shape | only need when first layer of a model; sets the input shape of the data | 
Taylor B. Arnold, taylor.arnold@acm.org
Chollet, Francois. 2015. Keras: Deep Learning library for Theano and TensorFlow.
Other layers: Activation,
ActivityRegularization,
AdvancedActivation,
BatchNormalization, Conv,
Dense, Dropout,
Flatten, GaussianNoise,
LayerWrapper,
LocallyConnected, Masking,
MaxPooling, Permute,
RNN, RepeatVector,
Reshape, Sequential
if(keras_available()) {
  X_train <- matrix(sample(0:19, 100 * 100, TRUE), ncol = 100)
  Y_train <- rnorm(100)
  
  mod <- Sequential()
  mod$add(Embedding(input_dim = 20, output_dim = 10,
                    input_length = 100))
  mod$add(Dropout(0.5))
  
  mod$add(GRU(16))
  mod$add(Dense(1))
  mod$add(Activation("sigmoid"))
  
  keras_compile(mod, loss = "mse", optimizer = RMSprop())
  keras_fit(mod, X_train, Y_train, epochs = 3, verbose = 0)
}Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.